Janossy Densities. II. Pfaffian Ensembles

Alexander Soshnikov ${ }^{1}$

Received November 14, 2002; accepted May 8, 2003

Abstract

We extend the main result of the companion paper J. Stat. Phys. 113:595-610 to the case of the pfaffian ensembles.

KEY WORDS: Random matrices; orthogonal polynomials; Janossy densities; pfaffian ensembles.

1. INTRODUCTION AND FORMULATION OF RESULTS

Let us consider a $2 n$-particle pfaffian ensemble introduced by Rains in ref. 9: Let (X, λ) be a measure space, $\phi_{1}, \phi_{2}, \ldots, \phi_{2 n}$ be complex-valued functions on X, and $\epsilon(x, y)$ be an antisymmetric kernel such that

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{2 n}\right)=\left(1 / Z_{2 n}\right) \operatorname{det}\left(\phi_{j}\left(x_{k}\right)\right)_{j, k=1, \ldots, 2 n} p f\left(\epsilon\left(x_{j}, x_{k}\right)\right)_{j, k=1, \ldots, 2 n} \tag{1}
\end{equation*}
$$

defines the density of a $2 n$-dimensional probability distribution on $X^{2 n}=$ $X \times \cdots \times X$ with respect to the product measure $\lambda^{\otimes 2 n}$. Ensembles of this form were introduced in refs. 9 and 11. We recall (see, e.g., ref. 5) that the pfaffian of a $2 n \times 2 n$ antisymmetric matrix $A=\left(a_{j k}\right), j, k=1, \ldots, 2 n$, $a_{j k}=-a_{k j}$, is defined as $p f(A)=\sum_{\tau}(-1)^{\operatorname{sign}(\tau)} a_{i_{1} j_{1}} \cdots a_{i_{n}, j_{n}}$, where the summation is over all partitions of the set $\{1, \ldots, 2 m\}$ into disjoint pairs $\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{n}, j_{n}\right\}$ such that $i_{k}<j_{k}, k=1, \ldots, n$, and $\operatorname{sign}(\tau)$ is the sign of the permutation $\left(i_{1}, j_{1}, \ldots, i_{n}, j_{n}\right)$. The normalization constant in (1) (usually called the partition function)

$$
\begin{equation*}
Z_{2 n}=\int_{X^{2 n}} \operatorname{det}\left(\phi_{j}\left(x_{k}\right)\right)_{j, k=1, \ldots, 2 n} p f\left(\epsilon\left(x_{j}, x_{k}\right)\right)_{j, k=1, \ldots, 2 n} \tag{2}
\end{equation*}
$$

[^0]can be shown to be equal to ($2 n$)! $p f(M)$, where the $2 n \times 2 n$ antisymmetric matrix $M=\left(M_{j k}\right)_{j, k=1, \ldots, 2 n}$ is defined as
\[

$$
\begin{equation*}
M_{j k}=\int_{X^{2}} \phi_{j}(x) \epsilon(x, y) \phi_{k}(y) \lambda(d x) \lambda(d y) . \tag{3}
\end{equation*}
$$

\]

For the pfaffian ensemble (1) one can explicitly calculate k-point correlation functions

$$
\begin{aligned}
\rho_{k}\left(x_{1}, \ldots, x_{k}\right):= & ((2 n)!/(2 n-k)!) \\
& \times \int_{X^{2 n-k}} p\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{2 n}\right) d \lambda\left(x_{k+1}\right) \cdots d \lambda\left(x_{2 n}\right), \\
& \quad k=1, \ldots, 2 n
\end{aligned}
$$

and show that they have the pfaffian form (ref. 9)

$$
\begin{equation*}
\rho_{k}\left(x_{1}, \ldots, x_{k}\right)=p f\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1, \ldots, k} \tag{4}
\end{equation*}
$$

where $K(x, y)$ is the antisymmetric matrix kernel

$$
\begin{align*}
& K(x, y) \\
& =\left(\begin{array}{cc}
\sum_{1 \leqslant j, k \leqslant 2 n} \phi_{j}(x) M_{j k}^{-t} \phi_{k}(y) & \sum_{1 \leqslant j, k \leqslant 2 n} \phi_{j}(x) M_{j k}^{-t}\left(\epsilon \phi_{k}\right)(y) \\
\sum_{1 \leqslant j, k \leqslant 2 n}\left(\epsilon \phi_{j}\right)(x) M_{j k}^{-t} \phi_{k}(y) & -\epsilon(x, y)+\sum_{1 \leqslant j, k \leqslant 2 n}\left(\epsilon \phi_{j}\right)(x) M_{j k}^{-t}\left(\epsilon \phi_{k}\right)(y)
\end{array}\right), \tag{5}
\end{align*}
$$

provided the matrix M is invertible (by definition $(\epsilon \phi)(x)=$ $\left.\int_{X} \epsilon(x, y) \phi(y) \lambda(d y)\right)$. If $X \subset \mathbb{R}$ and λ is absolutely continuous with respect to the Lebesgue measure, then the probabilistic meaning of the k-point correlation functions is that of the density of probability to find an eigenvalue in each infinitesimal interval around points $x_{1}, x_{2}, \ldots, x_{k}$. In other words

$$
\rho_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \lambda\left(d x_{1}\right) \cdots \lambda\left(d x_{k}\right)
$$

$=\operatorname{Pr}\left\{\right.$ there is a particle in each infinitesimal interval $\left.\left(x_{i}, x_{i}+d x_{i}\right)\right\}$.
On the other hand, if μ is supported by a discrete set of points, then

$$
\rho_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \lambda\left(x_{1}\right) \cdots \lambda\left(x_{k}\right)
$$

$=\operatorname{Pr}\left\{\right.$ there is a particle at each of the points $\left.x_{i}, i=1, \ldots, k\right\}$.

In general, random point processes with the k-point correlation functions of the pfaffian form (4) are called pfaffian random point processes. ${ }^{(8)}$ Pfaffian point processes include determinantal point processes ${ }^{(10)}$ as a particular case when the matrix kernel has the form $\left(\begin{array}{cc}\epsilon & \begin{array}{c}K \\ -\end{array} \\ 0\end{array}\right)$ where K is a scalar kernel and ϵ is an antisymmetric kernel.

So-called Janossy densities $\mathscr{f}_{k, I}\left(x_{1}, \ldots, x_{k}\right), k=0,1,2, \ldots$, describe the distribution of the eigenvalues in any given interval I. If $X \subset \mathbb{R}$ and λ is absolutely continuous with respect to the Lebesgue measure then

$$
\mathscr{J}_{k, I}\left(x_{1}, \ldots, x_{k}\right) \lambda\left(d x_{1}\right) \cdots \lambda\left(d x_{k}\right)
$$

$=\operatorname{Pr}\{$ there are exactly k particles in I, one in each of the k distinct infinitesimal intervals $\left.\left(x_{i}, x_{i}+d x_{i}\right)\right\}$.

If λ is discrete then

$$
\mathscr{J}_{k, I}\left(x_{1}, \ldots x_{k}\right)
$$

$=\operatorname{Pr}\left\{\right.$ there are exactly k particles in I, one at each of the k points x_{i},

$$
i=1, \ldots, k\}
$$

See refs. 3 and 4 for details and additional discussion. For pfaffian point processes the Janossy densities also have the pfaffian form (see refs. 8 and 9) with an antisymmetric matrix kernel L_{I} :

$$
\begin{equation*}
\mathscr{J}_{k, I}\left(x_{1}, \ldots, x_{k}\right)=\operatorname{const}(I) p f\left(L_{I}\left(x_{i}, x_{j}\right)\right)_{i, j=1, \ldots, k}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{I}=K_{I}\left(I d+J K_{I}\right)^{-1}, \tag{7}
\end{equation*}
$$

$J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and const $(I)=p f\left(J-K_{I}\right)$ is the Fredholm pfaffian of the restriction of the operator K on the interval I, i.e., const $(I)=p f\left(J-K_{I}\right)$ $=\left(p f\left(J+L_{I}\right)\right)^{-1}=\left(\operatorname{det}\left(I d+J K_{I}\right)\right)^{1 / 2}=\left(\operatorname{det}\left(I d-J L_{I}\right)\right)^{-1 / 2}$. (We refer the reader to ref. 9, Section 8 for the treatment of Fredholm pfaffians).

Let us define three $2 n \times 2 n$ matrices $G^{I}, M^{I}, M^{X \backslash I}$:

$$
\begin{align*}
G_{j k}^{I} & =\int_{I} \phi_{j}(x) \int_{X} \epsilon(x, y) \phi_{k}(y) \lambda(d y) \lambda(d x), \tag{8}\\
M_{j k}^{I} & =\int_{I^{2}} \phi_{j}(x) \epsilon(x, y) \phi_{k}(y) \lambda(d x) \lambda(d y), \tag{9}\\
M_{j k}^{X \backslash I} & =\int_{(X \backslash I)^{2}} \phi_{j}(x) \epsilon(x, y) \phi_{k}(y) \lambda(d x) \lambda(d y) \tag{10}
\end{align*}
$$

(please compare (9) and (10) with the above formula (3) for M). Throughout the paper we will assume that the matrices M^{I} and $M^{X \backslash I}$ are invertible.

The main result of this paper is
Theorem 1.1. The kernel L_{I} has a form similar to the formula (5) for K. Namely, L_{I} is equal to
$L_{I}(x, y)=\left(\begin{array}{c}\sum_{1 \leqslant j, k \leqslant 2 n} \phi_{j}(x)\left(M^{X \backslash I}\right)_{j k}^{-t} \phi_{k}(y) \\ \sum_{1 \leqslant j, k \leqslant 2 n}\left(\epsilon_{X \backslash I} \phi_{j}\right)(x)\left(M^{X \backslash I}\right)_{j k}^{-t} \phi_{k}(y)\end{array}\right.$

$$
\left.\begin{array}{c}
\sum_{1 \leqslant j, k \leqslant 2 n} \phi_{j}(x)\left(M^{X \backslash I}\right)_{j k}^{-t}\left(\epsilon_{X \backslash I} \phi_{k}\right)(y) \\
-\epsilon_{X \backslash I}(x, y)+\sum_{1 \leqslant j, k \leqslant 2 n}\left(\epsilon_{X \backslash I} \phi_{j}\right)(x)\left(M^{X \backslash I}\right)_{j k}^{-t}\left(\epsilon_{X \backslash I} \phi_{k}\right)(y)
\end{array}\right),
$$

where $\epsilon_{X \backslash I} \phi(x)=\int_{X \backslash I} \epsilon(x, y)^{+} \phi(y) \lambda(d y)$.
Comparing (11) with (5) one can see that the kernel L_{I} is constructed in the following way: 1) first it is constructed on $X \backslash I$ by the same recipe used to construct the kernel K on the whole $X ; 2$) it is extended then to I (we recall that L_{I} acts on $L^{2}(I, d \lambda(x))$, not on $L^{2}(X \backslash I, d \lambda(x))$).

This result contains as a special case Theorem 1.1 from the companion paper. ${ }^{(3)}$ The rest of the paper is organized as follows. We discuss some interesting special cases of the theorem, namely so-called polynomial ensembles ($\beta=1,2$, and 4) in Section 2. The proof of the theorem is given in Section 3.

2. RANDOM MATRIX ENSEMBLES WITH $\boldsymbol{\beta}=\mathbf{1 , 2 , 4}$

We follow the discussion in ref. 9 (see also refs. 11 and 12).

Biorthogonal Ensembles

Consider the particle space to be the union of two identical measure spaces (V, μ) and $(W, \mu): X=V \cup W, V=W$. The configuration of $2 n$ particles in X will consist of n particles v_{1}, \ldots, v_{n} in V and n particles w_{1}, \ldots, w_{n} in W in such a way that the configurations of particles in V and W are identical (i.e., $v_{j}=w_{j}, j=1, \ldots, n$). Let $\xi_{j}, \psi_{j}, j=1, \ldots, n$ be some functions on V. We define $\left\{\phi_{j}\right\}$ and ϵ in (1) so that $\phi_{j}(v)=0, v \in V$, $\phi_{j}(w)=\xi_{j}(w), \quad w \in W, \quad j=1, \ldots, n, \quad \phi_{j}(v)=\psi_{j-n-1}(v), \quad v \in V, \quad \phi_{j}(w)=0$, $w \in W, \quad j=n+1, \ldots, 2 n, \quad$ and $\quad \epsilon\left(v_{1}, v_{2}\right)=0, \quad v_{1}, v_{2} \in V, \quad \epsilon\left(w_{1}, w_{2}\right)=0$, $w_{1}, w_{2} \in W, \epsilon(v, w)=-\epsilon(w, v)=\delta_{v w}, v \in V, w \in W$. The restriction of the
measure λ on both V and W is defined to be equal to μ. Then (1) specializes into (see Corollary 1.5. in ref. 9)

$$
\begin{equation*}
p\left(v_{1}, \ldots, v_{n}\right)=\operatorname{const}_{n} \operatorname{det}\left(\xi_{j}\left(v_{i}\right)\right)_{i, j=1, \ldots, n} \operatorname{det}\left(\psi_{j}\left(v_{i}\right)\right)_{i, j=1, \ldots, n} . \tag{12}
\end{equation*}
$$

Ensembles of the form (12) are known as biorthogonal ensembles (see refs. 1 and 7). The statement of the Theorem 1.1 in the case (12) has been proven in the companion paper. ${ }^{(3)}$ The special case of the biorthogonal ensemble (12) when $V=\mathbb{R}, \xi_{j}(x)=\psi_{j}(x)=x^{j-1}$, and $V=\{\mathbb{C}| | z \mid=1\}$, $\xi_{j}(z)=\bar{\psi}_{j}(z)=z^{j-1}$, such ensembles are well known in Random Matrix Theory as unitary ensembles, see ref. 6 for details. An ensemble of the form (12) which is different from random matrix ensembles was studied in ref. 7. We specifically want to single out the polynomial ensemble with $\beta=2$.

Polynomial ($\beta=2$) Ensembles

Let $X=\mathbb{R}$ or $\mathbb{Z}, \phi_{j}(x)=x^{j-1}, j=1, \ldots, 2 n$, and $\lambda(d x)$ has a density $\omega(x)$ with respect to the reference measure on X (Lebesgue measure in the continuous case, counting measure in the discrete case). Then the formula (12) specializes into

$$
\begin{equation*}
p\left(v_{1}, \ldots, v_{n}\right)=\text { const }_{n} \prod_{1 \leqslant i<j \leqslant n}\left(v_{i}-v_{j}\right)^{2} \prod_{1 \leqslant j \leqslant n} \omega\left(v_{j}\right) . \tag{13}
\end{equation*}
$$

The next two ensembles we want to mention are the polynomial $\beta=1$ and 4 ensembles.

Polynomial ($\beta=1$) Ensembles

Let $X=\mathbb{R}$ or $\mathbb{Z}, \phi_{j}(x)=x^{j-1}, j=1, \ldots, 2 n, \epsilon(x, y)=\frac{1}{2} \operatorname{sgn}(y-x)$, and $\lambda(d x)$ has a density $\omega(x)$ with respect to the reference measure on X (Lebesgue measure in the continuous case, counting measure in the discrete case). Then the formula (1) specializes into the formula for the density of the joint distribution of $2 n$ particles in a so-called $\beta=1$ polynomial ensemble (see ref. 9, Remark 1):

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{2 n}\right)=\operatorname{const}_{n} \prod_{1 \leqslant i<j \leqslant 2 n}\left|x_{i}-x_{j}\right| \prod_{1 \leqslant j \leqslant 2 n} \omega\left(x_{j}\right) . \tag{14}
\end{equation*}
$$

In Random Matrix Theory the ensembles (14) in the continuous case are known as orthogonal ensembles, see ref. 6.

Polynomial ($\beta=4$) Ensembles

Similar to the biorthogonal case $(\beta=2)$ let us consider the particle space to be the union of two identical measure spaces $(Y, \mu),(Z, \mu)$, $X=Y \cup Z, Y=Z$, where $Y=\mathbb{R}$ or $Y=\mathbb{Z}$. The configuration of $2 n$ particles $x_{1}, \ldots, x_{2 n}$, in X will consist of n particles y_{1}, \ldots, y_{n} in Y
and n particles z_{1}, \ldots, z_{n}, in Z in such a way that the configurations of particles in Y and Z are identical. We define $\left\{\phi_{j}\right\}$ and ϵ so that $\phi_{j}(y)=y^{j}, y \in Y, \phi_{j}(z)=j z^{j-1}, z \in Z, \epsilon\left(y_{1}, y_{2}\right)=0, \epsilon\left(z_{1}, z_{2}\right)=0, \epsilon(y, z)=$ $-\epsilon(z, y)=\delta_{y z}$. As above we assume that the measure μ has a density ω with respect to the reference measure on Y. Then the formula (1) specializes into the formula for the density of the joint distribution of n particles in a $\beta=4$ polynomial ensemble (see Corollary 1.3. in ref. 9)

$$
\begin{equation*}
p\left(y_{1}, \ldots, y_{n}\right)=\operatorname{const}_{n} \prod_{1 \leqslant i<j \leqslant n}\left(y_{i}-y_{j}\right)^{4} \prod_{1 \leqslant j \leqslant n} \omega\left(y_{j}\right) . \tag{15}
\end{equation*}
$$

In Random Matrix Theory the ensembles (15) are known as symplectic ensembles, see ref. 6.

3. PROOF OF THE MAIN RESULT

Consider matrix kernels

$$
\begin{equation*}
\mathscr{K}_{I}=-J K_{I}, \quad \mathscr{L}_{I}=-J L_{I} . \tag{16}
\end{equation*}
$$

Then the relation (7) simplifies into

$$
\begin{equation*}
\mathscr{L}_{I}=\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1} \tag{17}
\end{equation*}
$$

which is the same relation that is satisfied by the correlation and Janossy scalar kernels in the determinantal case. ${ }^{(2,4)}$ The consideration of \mathscr{K}_{I} and \mathscr{L}_{I} is motivated by the fact that the pfaffians of the $2 k \times 2 k$ matrices with the antisymmetric matrix kernels K_{I} and L_{I} are equal to the quaternion determinants ${ }^{(6)}$ of $2 k \times 2 k$ matrices with the kernels $\mathscr{K}_{I}, \mathscr{L}_{I}$ when the latter matrices are viewed as $k \times k$ quaternion matrices (i.e., each quaternion entry corresponds to a 2×2 block with complex entries). It follows from (5) and (16) that the kernel \mathscr{K}_{I} is given by the formula

$$
\mathscr{K}_{I}=\sum_{j, k=1, \ldots, 2 n} M_{j k}^{-t}\left(\begin{array}{cc}
-\left(\epsilon \phi_{j}\right) \otimes \phi_{k} & -\left(\epsilon \phi_{j}\right) \otimes\left(\epsilon \phi_{k}\right) \tag{18}\\
\phi_{j} \otimes \phi_{k} & \phi_{j} \otimes\left(\epsilon \phi_{k}\right)
\end{array}\right)+\left(\begin{array}{ll}
0 & \epsilon \\
0 & 0
\end{array}\right) .
$$

Let us denote by $\widetilde{\mathscr{L}}_{I}$ the following kernel

$$
\begin{align*}
\widetilde{\mathscr{L}}_{I}(x, y)= & \sum_{1 \leqslant j, k \leqslant 2 n}\left(M^{X \backslash I}\right)_{j k}^{-t}\left(\begin{array}{cc}
-\left(\epsilon_{X \backslash I} \phi_{j}\right) \otimes \phi_{k} & -\left(\epsilon_{X \backslash I} \phi_{j}\right) \otimes\left(\epsilon_{X \backslash I} \phi_{k}\right) \\
\phi_{j} \otimes \phi_{k} & \phi_{j} \otimes\left(\epsilon_{X \backslash I} \phi_{k}\right)
\end{array}\right) \\
& +\left(\begin{array}{ll}
0 & \epsilon \\
0 & 0
\end{array}\right) . \tag{19}
\end{align*}
$$

As above, $\epsilon \phi$ stands for $\int_{X} \epsilon(x, y) \phi(y)$. We use the notation $\phi_{j} \otimes \phi_{k}$ as a shorthand for $\phi_{j}(x) \phi_{k}(y)$. To prove the main result of the paper we will show that $\widetilde{\mathscr{L}}_{I}=\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}$ (in other words we are going to prove that $\widetilde{\mathscr{L}}_{I}=\mathscr{L}_{I}$, where \mathscr{L}_{I} is defined in (17)). The proof relies on Lemmas 1 and 2 given below. Let us introduce the notation $\left(\epsilon_{I} \phi\right)(x)=\int_{I} \epsilon(x, y) \phi_{s}(y) d \lambda(y)$. We will show that the finite-dimensional subspace $\mathscr{H}=\operatorname{Span}\left\{\binom{\epsilon \phi_{s}}{-\phi_{s}},\binom{-\epsilon \phi_{s}}{-\phi_{s}}\right.$, $\left.\binom{\epsilon_{I} \phi_{s}}{l_{s}}\right\}_{s=1, \ldots 2 n}$ is invariant under \mathscr{K}_{I} and $\widetilde{\mathscr{L}}_{I}$. The main part of the proof of the theorem is to show that $\widetilde{\mathscr{L}}_{I}=\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}$ holds on \mathscr{H}.

Lemma 3.1. The operators $\mathscr{K}_{I}, \widetilde{\mathscr{L}}_{I}$ leave \mathscr{H} invariant and $\widetilde{\mathscr{L}}_{I}=$ $\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}$ holds on \mathscr{H}.

Below we give the proof of the lemma. Using the notations introduced above in (8)-(10) one can easily calculate

$$
\begin{align*}
& \mathscr{K}_{I}\binom{\epsilon \phi_{s}}{0}=\sum_{j=1, \ldots, 2 n}-\left(\left(G^{I}\right)^{t} M^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}} \tag{20}\\
& \mathscr{K}_{I}\binom{0}{-\phi_{s}}=\sum_{j=1, \ldots, 2 n}\left(G^{I} M^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}}-\binom{\epsilon_{I} \phi_{s}}{0} . \tag{21}
\end{align*}
$$

Defining the $2 n \times 2 n$ matrix T as

$$
\begin{equation*}
T_{s k}=\int_{I} \phi_{s}(x) \int_{X \backslash I} \epsilon(x, y) \phi_{k}(y) d \lambda(y) d \lambda(x) \tag{22}
\end{equation*}
$$

we compute

$$
\begin{equation*}
\mathscr{K}_{I}\binom{\epsilon_{I} \phi_{s}}{0}=\sum_{j=1, \ldots 2 n}\left(\left(G^{I}-T\right) M^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}}, \tag{23}
\end{equation*}
$$

where $\quad\left(G^{I}-T\right)_{s k}=M_{s k}^{I}=\int_{I^{2}} \phi_{s}(x) \epsilon(x, y) \phi_{k}(y) \lambda(d x) \lambda(d y)$. One can rewrite Eqs. (20) and (21) as

$$
\begin{align*}
& \mathscr{K}_{I}\binom{\epsilon \phi_{s}}{-\phi_{s}}=\sum_{j=1, \ldots 2 n}\left(\left(G^{I}-\left(G^{I}\right)^{t}\right) M^{-1}\right)_{s j}^{t}\binom{\epsilon \phi_{j}}{-\phi_{j}}-\binom{\epsilon_{I} \phi_{s}}{0}, \tag{24}\\
& \mathscr{K}_{I}\binom{-\epsilon \phi_{s}}{-\phi_{s}}=\sum_{j=1, \ldots 2 n}\left(\left(G^{I}+\left(G^{I}\right)^{t}\right) M^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}}-\binom{\epsilon_{I} \phi_{s}}{0} . \tag{25}
\end{align*}
$$

We conclude that that the subspace \mathscr{H} is indeed invariant under \mathscr{K}_{I} and the matrix of the restriction of \mathscr{K}_{I} on \mathscr{H} has the following block structure in the basis $\left\{\binom{\epsilon \phi_{s}}{-\phi_{s}},\binom{-\epsilon \phi_{s}}{-\phi_{s}},\binom{\epsilon \phi_{\delta_{s}}}{0}\right\}_{s=1, \ldots 2 n}$:

$$
\left(\begin{array}{ccc}
\left(G^{I}-\left(G^{I}\right)^{t}\right) M^{-1} & \left(G^{I}+\left(G^{I}\right)^{t}\right) M^{-1} & \left(G^{I}-T\right) M^{-1} \tag{26}\\
0 & 0 & 0 \\
-\mathrm{Id} & -\mathrm{Id} & 0
\end{array}\right)
$$

(in particular $\operatorname{Ran}\left(\left.\mathscr{K}_{I}\right|_{\mathscr{E}}\right)=\operatorname{Span}\left\{\binom{\epsilon \phi_{s}}{-\phi_{s}},\binom{\epsilon_{\epsilon} \phi_{s}}{0}\right\}_{s=1, \ldots 2 n}$. Let us introduce some additional notations:

$$
\begin{align*}
& A=\left(G^{I}-\left(G^{I}\right)^{t}\right) M^{-1}, \tag{27}\\
& B=\left(G^{I}+\left(G^{I}\right)^{t}\right) M^{-1}, \tag{28}\\
& C=\left(G^{I}-T\right) M^{-1} . \tag{29}
\end{align*}
$$

When a matrix has a block form

$$
\mathscr{M}=\left(\begin{array}{ccc}
A & B & C \\
0 & 0 & 0 \\
-\mathrm{Id} & -\mathrm{Id} & 0
\end{array}\right)
$$

(as it is in our case) the matrix $\mathscr{M}(\mathrm{Id}-\mathscr{M})^{-1}$ has the block form

$$
\left(\begin{array}{ccc}
(\mathrm{Id}-A+C)^{-1}-\mathrm{Id} & (B-C)(\mathrm{Id}-A+C)^{-1} & C(\mathrm{Id}-A+C)^{-1} \tag{30}\\
0 & 0 & 0 \\
-(\mathrm{Id}-A+C)^{-1} & -\mathrm{Id}-(B-C)(\mathrm{Id}-A+C)^{-1} & -C(\operatorname{Id}-A+C)^{-1}
\end{array}\right)
$$

As one can see from the formulas (31)-(33) the invertibility of Id $-\mathscr{M}$ follows from the invertibility of $M^{X \backslash I}$ which has been assumed throughout the paper. We have

$$
\begin{align*}
(\mathrm{Id}-A+C)^{-1} & =M\left(M+\left(G^{I}\right)^{t}-T\right)^{-1}=M\left(M^{X \backslash I}\right)^{-1} \tag{3}\\
C(\mathrm{Id}-A+C)^{-1} & =\left(G^{I}-T\right)\left(M+\left(G^{I}\right)^{t}-T\right)^{-1}=M^{I}\left(M^{X \backslash I}\right)^{-1} \tag{32}\\
(B-C)(\mathrm{Id}-A+C)^{-1} & =\left(\left(G^{I}\right)^{t}+T\right)\left(M+\left(G^{I}\right)^{t}-T\right)^{-1} \\
& =\left(\left(G^{I}\right)^{t}+T\right)\left(M^{X \backslash I}\right)^{-1} . \tag{33}
\end{align*}
$$

Let us now compute the matrix of the restriction of $\widetilde{\mathscr{L}}_{I}$ on \mathscr{H}. We have

$$
\tilde{\mathscr{L}}_{I}=\sum_{j, k=1, \ldots, 2 n}\left(M_{j k}^{X \backslash I}\right)^{t}\left(\begin{array}{cc}
-\left(\epsilon_{X \backslash I} \phi_{j}\right) \otimes \phi_{k} & -\left(\epsilon_{X \backslash I} \phi_{j}\right) \otimes\left(\epsilon_{X \backslash I} \phi_{k}\right) \tag{34}\\
\phi_{k} \otimes \phi_{k} & \phi_{j} \otimes\left(\epsilon_{X \backslash I} \phi_{k}\right)
\end{array}\right)+\left(\begin{array}{cc}
0 & \epsilon_{X \backslash I} \\
0 & 0
\end{array}\right) .
$$

Similarly to the computations above one can see that \mathscr{H} is invariant under $\widetilde{\mathscr{L}}_{I}$ and

$$
\begin{align*}
\tilde{\mathscr{L}}_{I}\binom{\epsilon \phi_{s}}{-\phi_{s}}= & \sum_{j=1, \ldots 2 n}\left(\left(T-\left(G^{I}\right)^{t}\right)\left(M^{X \backslash I}\right)^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}} \\
& -\sum_{1 \leqslant j \leqslant 2 n}\left(\left(T-\left(G^{I}\right)^{t}\right)\left(M^{X \backslash I}\right)^{-1}\right)_{s j}\binom{\epsilon_{I} \phi_{j}}{0}-\binom{\epsilon_{I} \phi_{s}}{0}, \tag{35}\\
\widetilde{\mathscr{L}}_{I}\binom{-\epsilon \phi_{s}}{-\phi_{s}}= & \sum_{j=1, \ldots 2 n}\left(\left(T+\left(G^{I}\right)^{t}\right)\left(M^{X \backslash I}\right)^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}} \\
& -\sum_{1 \leqslant j \leqslant 2 n}\left(\left(T+\left(G^{I}\right)^{t}\right)\left(M^{X \backslash I}\right)^{-1}\right)_{s j}\binom{\epsilon_{I} \phi_{j}}{0}-\binom{\epsilon_{I} \phi_{s}}{0}, \tag{36}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{\mathscr{L}}_{I}\binom{\epsilon_{I} \phi_{s}}{0}= & \sum_{j=1, \ldots, 2 n}\left(\left(G^{I}-T\right)\left(M^{X \backslash I}\right)^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}} \\
& -\sum_{j=1, \ldots, 2 n}\left(\left(G^{I}-T\right)\left(M^{X \backslash I}\right)^{-1}\right)_{s j}\binom{\epsilon_{I} \phi_{j}}{0} . \tag{37}
\end{align*}
$$

Therefore the restriction of $\widetilde{\mathscr{L}}_{I}$ to \mathscr{H} in the basis $\left\{\binom{\epsilon \phi_{s}}{-\phi_{s}},\binom{-\epsilon \phi_{s}}{-\phi_{s}},\binom{\epsilon / \phi_{\phi}}{0}\right\}_{s=1, \ldots 2 n}$ has the following block structure

$$
\left(\begin{array}{ccc}
\left(T-\left(G^{I}\right)^{t}\right)\left(M^{X \backslash I}\right)^{-1} & \left(T+\left(G^{I}\right)^{t}\right)\left(M^{X \backslash I}\right)^{-1} & \left(G^{I}-T\right)\left(M^{X \backslash I}\right)^{-1} \tag{38}\\
0 & 0 & 0 \\
-\mathrm{Id}-\left(T-\left(G^{I}\right)^{t}\right)\left(M^{X \backslash I}\right)^{-1} & -\mathrm{Id}-\left(T+\left(G^{I}\right)^{t}\right)\left(M^{X \backslash I}\right)^{-1} & -\left(G^{I}-T\right)\left(M^{X \backslash I}\right)^{-1}
\end{array}\right) .
$$

Comparing (30), (31)-(33), and (38) we see that $\widetilde{\mathscr{L}}_{I}=\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}$ on \mathscr{H}. Lemma 3.1 is proven.

To show that $\widetilde{\mathscr{L}}_{I}=\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}$ also holds on the complement of \mathscr{H} it is enough to prove it on the subspaces $\binom{\left(\mathscr{H}_{1}\right)^{\perp}}{0}$, and $\binom{0}{\left(\mathscr{H}_{2}\right)^{\perp}}$, where $\mathscr{H}_{1}=\operatorname{Span}\left(\overline{\epsilon_{I} \phi_{s}}\right)_{k=1, \ldots, 2 n}$ and $\mathscr{H}_{2}=\operatorname{Span}\left(\overline{\phi_{s}}\right)_{k=1, \ldots, 2 n}$. The invertibility of the matrix M_{I} implies that actually it is enough to prove $\widetilde{\mathscr{L}}_{I}=\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}$ on the subspaces $\left(\begin{array}{c}\left(\mathscr{H}_{0}\right)^{1}\end{array}\right)$, and $\left(\underset{\left.\left(\mathscr{H}_{1}\right)^{1}\right)}{0}\right)$. Here we use the standard notation $\left(\mathscr{H}_{i}\right)^{\perp}$ for the orthogonal complement in $L^{2}(I)$ with the standard scalar product $(f, g)_{I}=\int_{I} \overline{f(x)} g(x) d \lambda(x)$. We start with the first subspace.

Lemma 3.2. The relation $\widetilde{\mathscr{L}}_{I}=\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}$ holds on $\left(\underset{\left.\left(\mathscr{H}_{1}\right)^{\perp}\right)}{0}\right)$.
The proof is a straightforward check. The notations are slightly simplified when the functions $\left\{\epsilon_{I} \phi_{k}, \epsilon \phi_{k}, k=1, \ldots, 2 n\right\}$ are linearly independent in $L^{2}(I)$. The degenerate case is left to the reader. Consider $f_{s} \in\left(\mathscr{H}_{1}\right)^{\perp}$, $s=1, \ldots, 2 n$ such that

$$
\begin{equation*}
\left(\overline{\epsilon \phi_{k}}, f_{s}\right)_{I}=\left(\overline{\epsilon \phi_{k}}, \phi_{s}\right)_{I}, \quad k=1, \ldots, 2 n . \tag{39}
\end{equation*}
$$

We are going to establish the relation for $\binom{0}{f_{s}}$, which then immediately extends by linearity to the linear combinations of $\binom{0}{f_{s}}$. We write

$$
\begin{align*}
\mathscr{K}_{I}\binom{0}{-f_{s}} & =\sum_{j, k=1, \ldots, 2 n} M_{j k}^{-t}\left(\overline{\epsilon \phi_{k}},-f_{s}\right)_{I}\binom{-\epsilon \phi_{j}}{\phi_{j}}-\binom{\epsilon_{I} f_{s}}{0} \\
& =\sum_{j, k=1, \ldots, 2 n} M_{j k}^{-t}\left(\overline{\epsilon \phi_{k}},-\phi_{s}\right)_{I}\binom{-\epsilon \phi_{j}}{\phi_{j}}-\binom{\epsilon_{I} f_{s}}{0} \\
& =\sum_{j=1, \ldots, 2 n}\left(G^{I} M_{s j}^{-1}\right)\binom{\epsilon \phi_{j}}{-\phi_{j}}-\binom{\epsilon_{I} f_{s}}{0} \tag{40}
\end{align*}
$$

(we have used (39) in the second equality) and

$$
\begin{equation*}
\mathscr{K}_{I}\binom{\epsilon_{I} \phi_{s}}{-f_{s}}=\sum_{j=1, \ldots, 2 n}\left(\left(G^{I}-\left(G^{I}\right)^{t}\right) M^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}}-\binom{\epsilon_{I} f_{s}}{0} . \tag{41}
\end{equation*}
$$

Combining (40) and (41) we get

$$
\mathscr{K}_{I}\binom{-\epsilon_{I} \phi_{s}}{-f_{s}}=\sum_{j=1, \ldots, 2 n}\left(\left(G^{I}+\left(G^{I}\right)^{t}\right) M^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}}-\binom{\epsilon_{I} f_{s}}{0} .
$$

Similarly to (23) we compute

$$
\begin{equation*}
\mathscr{K}_{I}\binom{\epsilon_{I} \phi_{s}}{0}=\sum_{j=1, \ldots, 2 n}\left(\left(G^{I}-T\right) M^{-1}\right)_{s j}\binom{\epsilon \phi_{j}}{-\phi_{j}} . \tag{43}
\end{equation*}
$$

It should be noted that $\mathscr{K}_{I}\binom{\epsilon_{I} f_{s}}{0}=0$ because $\int_{I}\left(\epsilon_{I} \phi_{s}\right)(x) \phi_{j}(x) d \lambda(x)=$ $-\int_{I} f_{s}(x)\left(\epsilon_{I} \phi_{j}\right)(x) d \lambda(x)=0$ for all $j=1, \ldots, 2 n$. This together with (39) allows us to conclude that the calculation of $\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}\binom{0}{f_{s}}$ is almost identical to the calculation of $\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}\binom{0}{\phi_{s}}$ with the only difference that in the former one we have to replace the term $-\binom{\epsilon_{1} \phi_{s}}{0}$ by $-\binom{\epsilon_{1} f_{s}}{0}$ (see the last equation of (44)). Namely

$$
\begin{align*}
\mathscr{K}_{I}(\mathrm{Id}- & \left.\mathscr{K}_{I}\right)^{-1}\binom{0}{-f_{s}} \\
= & \mathscr{K}_{I}\left(\operatorname{Id}-\mathscr{K}_{I}\right)^{-1}\left(\frac{1}{2}\binom{\epsilon \phi_{s}}{-f_{s}}+\binom{-\epsilon \phi_{s}}{-f_{s}}\right) \\
= & \sum_{j=1, \ldots, 2 n}(1 / 2)\left((A+B)(\operatorname{Id}-A+C)^{-1}\right)_{s j}\binom{\epsilon_{I} \phi_{j}}{-\phi_{j}} \\
& -\sum_{j=1, \ldots, 2 n}(1 / 2)\left((A+B)(\operatorname{Id}-A+C)^{-1}\right)_{s j}\binom{\epsilon_{I} \phi_{j}}{0}-\binom{\epsilon_{I} f_{s}}{0} \\
= & \sum_{j=1, \ldots, 2 n}\left[G^{I}\left(M^{X \backslash I}\right)^{-1}\right]_{s j}\left[\binom{\epsilon \phi_{j}}{-\phi_{j}}-\binom{\epsilon_{I} \phi_{j}}{0}\right]-\binom{\epsilon_{I} f_{s}}{0} . \tag{44}
\end{align*}
$$

where A, B, C are defined in (27)-(29). At the same time

$$
\begin{align*}
\tilde{\mathscr{L}}_{I}\binom{0}{-f_{s}} & =\sum_{j, k=1, \ldots, 2 n}\left(\left(M^{X \backslash I}\right)^{-t}\right)_{j k}\binom{\epsilon_{X \backslash I} \phi_{j}}{-\phi_{j}}\left(\overline{\epsilon_{X \backslash I} \phi_{k}}, f_{s}\right)_{I}-\binom{\epsilon_{I} f_{s}}{0} \\
& =\sum_{j, k=1, \ldots, 2 n}\left(\left(M^{X \backslash I}\right)^{-t}\right)_{j k}\binom{\epsilon_{X \backslash I} \phi_{j}}{-\phi_{j}}\left(\overline{\epsilon \phi_{k}}, f_{s}\right)_{I}-\binom{\epsilon_{I} f_{s}}{0} \\
& =\left[G^{I}\left(M^{X \backslash I}\right)^{-1}\right]_{s j}\left[\binom{\epsilon \phi_{j}}{-\phi_{j}}-\binom{\epsilon_{I} \phi_{j}}{0}\right]-\binom{\epsilon_{I} f_{s}}{0} . \tag{45}
\end{align*}
$$

Therefore $\widetilde{\mathscr{L}}_{I}\binom{0}{{ }_{-f_{s}}}=\mathscr{K}_{I}\left(\operatorname{Id}-\mathscr{K}_{I}\right)^{-1}\binom{0}{{ }_{-f_{s}}}, s=1, \ldots 2 n$. By linearity result follows for all $\binom{0}{f}$ such that $\left(\overline{I_{I} \phi_{k}}, f\right)_{I}=\int_{I}\left(\epsilon_{I} \phi_{k}\right)(x) f(x) d \lambda(x)=0$, $k, j=1, \ldots, 2 n$. Lemma 3.2 is proven.

To check (17) on $\binom{\left(\mathscr{F}_{2}\right)^{\perp}}{0}$ we note that $\mathscr{K}_{I}\left(\mathrm{Id}-\mathscr{K}_{I}\right)^{-1}\binom{g}{0}=\widetilde{\mathscr{L}}_{I}\binom{g}{0}=0$ for g such that $\int_{I} g(x) \phi_{k}(x) d \lambda(x)=0, k=1, \ldots, 2 n$, which together with the invertibility of M finishes the proof. The theorem is proven.

ACKNOWLEDGMENTS

It is a great pleasure to thank Alexei Borodin and Eric Rains for useful discussions. The author also would like to thank the anonymous
referee for pointing out a number of misprints. Research was supported in part by the Sloan Research Fellowship and NSF Grant DMS-0103948.

REFERENCES

1. A. Borodin, Biorthogonal ensembles, Nucl. Phys. B 536:704-732 (1999).
2. A. Borodin and G. Olshanski, Distributions on partitions, point processes, and the hypergeometric kernel, Commun. Math. Phys. 211:335-358 (2000).
3. A. Borodin and A. Soshnikov, Janossy densities. I. Determinantal ensembles, J. Stat. Phys. 113:595-611 (2003).
4. D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes (SpringerVerlag, New York, 1988).
5. C. D. Godsil, Algebraic Combinatorics (Chapman \& Hall, New York, 1993).
6. M. L. Mehta, Random Matrices (Academic Press, New York, 1991).
7. K. A. Muttalib, Random matrix models with additional interactions, J. Phys. A 285:L159 (1995).
8. G. Olshanski, Pfaffian processes, unpublished note (2002).
9. E. Rains, Correlation functions for symmetrized increasing subsequences, available at arXiv:math.CO/0006097.
10. A. Soshnikov, Determinantal random point fields, Russian Math. Surveys 55:923-975 (2000).
11. C. A. Tracy and H. Widom, Correlation functions, Cluster functions, and spacing distributions for random matrices, J. Stat. Phys. 92:809-835 (1998).
12. H. Widom, On the relation between orthogonal, symplectic and unitary matrix ensembles, J. Stat. Phys. 94:347-363 (1999).

[^0]: ${ }^{1}$ Department of Mathematics, University of California at Davis, One Shields Ave., Davis, California 95616; e-mail: soshniko@math.ucdavis.edu

